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The relaxation function of  linear polymers possessing a discrete realxation time spectrum is analyzed. 

Polymers possess a discrete set of principal relaxation times >~ ( i=  1, ..., N, k~<)~+~) . A definite relaxation mecha- 

nism, associated with the mobili ty of  specific structural elements [ 1 ], individual fine-scale sections of macromolecules, free 
and bound segments in the bulk, and in the adsorbed part of  the polymer on the active filler, as well as in microdomains 
of  supermolecular and supersegmental structures and particles of the active filler, corresponds to each principal time 
X i. We considered the shear strain of a polymer which is fundamental to the analysis of  more complex kinds of stress state. 

The magnitude of the contribution of each of the relaxation mechanism to the total system relaxation process during shear 
is determined by the partial elastic modulus G i. Any principal i-th process is a multiplet  process, i.e., possesses a fine 

structure of the spectrum. Hence, in addition to the principal relaxation time Xi, for each relaxation process there is a number 

of other relaxation times X i around the principal time kin (n = 2, 3 . . . .  ), to which the partial elastic moduli  Gin will corres- 

pond. This is due to different reasons [ 1 ] - the size distribution of structural elements of  a given type, the difference in 
local interactions between a structural element and its neighbors, the cooperative nature of  the mot ion of structural elements, 
etc. Thus, for example, the presence of a relaxation time spectrum in the K a r g i n - S l o n i m s k i i - R o u t h  [2, 3] and the D o i -  
Edwards [4] models , respectively, for a dilute and concentrated solution of  macromolecules is related to the decomposition 
of the macromolecule motion into separate components (modes), each of which governs the coordination displacement of  
parts of the macromolecule. 

In the case of small strains (linear viscoelasticity domain), the rheological equation is written as follows 

t (1)  
T (t) - 2 jf ~ (t - -  ~) e (T) d~, 

where T, e are, respectively, the tensors of the excess stresses and strain rates, and G(t) is the relaxation function deter- 
mined from tests on stress relaxation. The Newtonian viscosity ~ equals 

For  a discrete relaxation time spectrum 

2 
11= ~ G(t) dt. 

"o 

(2) 

N 2 G ( t ) =  %7 Gi,~exp(--t/ '&~,),  (3) 

N 
,1 = Z (4) 

f== [ 12= I 

As an analysis of  many empirical nonlinear viscoelastic models shows [5], Eq. (3) is even applicable in the case of nonlinear 
processes if their nature is geometric, i.e., a change in structure does not occur. The relaxation function parameters (3) 
play a decisive role even in the rheological equation for large strains [5] when the relation between the stress and strain 
rate tensors is nonlinear in nature. The following empirical formulas [5] 

k ~  = ),dn ~i, Gi,~ = Gi/tz (h, (5) 

which are most convenient for experimental data processing, are used extensively for the distributions of the relaxation 
times kin and the corresponding moduli  Gin. Analogous power-law expressions are also obtained as a result of  a computat ion 
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of moiecular-kinet ic  models  of  p o l y m e r s .  Thus,  a = 2, i3 = 0 for a free-flowing macromolecule  model  in a K a r g i n -  
S l o n i m s k i i - R o u t h  solution,  a a~ 3/2, t3 = 0 [3] for a Z imm model  wi th  h y d r o d y n a m i c  in teract ion of  the macromoiecule  
segments, and a = 2, /3 = 2 for  the D o i - E d w a r d s  [4] and C u r t i s - B i r d  [6] models  of macromolecules  in a concent ra ted  
solut ion and a melt.  F r o m  the condi t ions  for  convergence of  the series (4) there  follows that  ~i +/3i > 1. In the case of 
applying (5), the express ion (3) takes the form 

N 

G(I) = ~ Gi[i (Oi), Oi = t tki ,  (6) 

Le., for  each re laxat ion  mechanism,  a part ia l  re laxa t ion  funct ion 

/ ( 0 ) =  ~ ~ e x p ( - - n ~ 0 ) ,  c z + 1 3 > I .  (7) 

is in t roduced.  Other  kdnds of  kernels,  e.g., Kol tunov,  Rabotnov ,  Rzhani tsyn,  Slonimskii ,  etc. (see the appropr ia te  bibl iography 
in [ 1 ]), are used extensively in (1) in the mechanics  of  viscoelastic materials.  

By analyzing the a sympto t i c  behavior  of  the series (7), we have establ ished a connect ion  between the kernel for the 
discrete t ime spec t rum (6) and the o ther  kinds of  kernels used in the mechanics  of  viscoelastic materials.  To  do this we 
apply  the Laplace t rans format ion  to  the funct ion  f(0) 

0 n 1 

We use the Mellin t ransform to f ind the a sympto t i c  behavior  o f  the series (8) for [ z l > >  1 and Izl << 1. Since [71 

s--t~ 

g (s) = .v ~-I dx az  a ( S - - -  ~) for 0 < Y { e  < 1 ,  
a ' - -  * 

o~ 

then by applying the inversion formula  for  the Mellin t ransform for the funct ion g(s) and subst i tut ing it in to  the series (8), 

we obta in  (here j = f - z T )  

c + i ~  s--tg 1 c + i ~  

/ ( z ) - -  ~ si-- a--(s __ [A) ds = (o (s) ds, 
c i~  CZ c - - ~  

.... ~ ~ ( s -  ~) 
where ~.,> (s) -- az = ~ (s)/~z sin ~ - -  

(9) 

< ~ + 3 .  

, r (s) is the Riemann  zeta function�9 Fo rmula  (9) is valid for  Re(s) > 1, ~ < Re(s) 

Let  us examine  the behavior  o f  the func t ion  co(s) in the complex  plane. The zeta funct ion ~'(s) has a pole with 

residue 1 f o r s  = 1 [81, sin u ( s - - B ) - - 0  f o r s = 1 3 + c m ,  n = 0 , + l , + 2  . . . . .  F o r ( 1  - /3)/a not  equal to  zero or an 
cz 

integer,  the func t ion  co(s) has jus t  a f irst-order pole:  

Res (m (s)) az ~- -  - l  a ( 1 - -  13) /~ sin - - ,  Res (o (s)) = (- -1) n k f - ~  (13 5 ~u). 

When (1 - 3)/ce equals zero or an integer,  then the funct ion  co(s) has a second-order  pole at the point  s = 1. Using the 

power  series expansion of  the zeta func t ion  at  the po in t  s = 1 [8], we obta in  

Res@(s))  = yz - h - l - b  1 ~ z - h - 1 1 n z ,  k - -  1 3 -  1 

where 3' is the Euler  constant .  App ly ing  the a sympto t i c  formulas for  ~'(s) as Im (s) -+ +o~ [8, 9], we easily show that  the 

funct ion co(s) is exponent ia l ly  small  as Im (s) -+ _+oo. 
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Transferring the line of integration in integral (9) to the left with the addition of  the residues at the appropriate 

poles, and letting c -+ _oo we obtain the asymptotic formula for f(z) as Iz I ~  = : 

1--IB 1 

(1-- 13) -t- ~ z~+ '~ ' c~ 
O~ s i n  - -  n = 0  

(__ 1)'~; (13 - -  cxn) ~-- 1 
- -k - - I  1 Z--h--I  - -  k .  (z) --~ 7z + -- In z + z 1+'~ ' o~ 

fs 
n~>O ,n ~k  

(10) 

F o r / 3 -  a n <  1 [8] 

(~- an) = 

) 2r(~n--13 + 1):(~n--13 + 1)cos ( + ( ~ n . - 1 3  -H 1) 

(2.~)~"-~+ I 

Analogously transferring the line of integration in (9) to the right with the addition of the appropriate poles and letting 

c ~ +co, we obtain the asymptotic formula for f(z) as ]z I -+ 0: 

/(z) ~ 4,, (_  1F-~ z~_~ (11) 

Returning to the original in (10) and (11) by using the Laplace transform inversion formulas [7], we obtain 

' ( 0 ) ~  1-~- O~JF ( ! - '~  IB) -]- ~ (--1) '~(IB-- c*n)O'~n,  ' [3--lcr 

{X n=O 

- ~ k ,  
- -  "7-- 

(12) 

[ (O) ~ % (O) + ~ ~  ( -  1)=~ ([~m!- ~n) 0 '~ , iB --{~ 1 = k; 

n ~ 0  ,n ~ 

for 0 -+ 0 

f (0 )~  ~" ( - -1) ' - '  ~{n-')(0);(~ + ~n) (13) 
n = i  

for 0 -+ co. Here 

[ ? - - l ~ l n ~ , 0 ,  k = 0 ,  

I V  + l + T +  " + k, 
, k / > I ,  

~ ( n - - l ) ( 0 )  i s  the n-th generalized derivative of the Heaviside function [10]. The formula (12) obtained for/3 = 0 agrees with 
the result in [9]. 

In addition to the asymptotic formulas (12) and (13), the asymptotic formulas ( t0)  and (11) for the series (8) are 
also important for applications. Thus, for instance, the dependence of the shear viscosity on the shear rate is given by a 
series of the type (8) for many nonlinear rheological models [5 ]. In this case (10) and (11) determine the dependence of 
the fluid viscosity for large and small shear rates, respectively. The comparison made in [ 11 ] between the results of the 

numerical computations of  the function f(z) for a = 2~, ~ = 3.5 for real values of  z by means of (8), (10), (11) displayed 

good applicability of the first several terms of the asymptotic formula (11) for z < 20 and (10) for z > 20. Series of the 

form (8) appear also in the calculation of polymer viscosity under small stationary harmonic oscillation conditions when 

e(t) = �9 o exp (jwt). In this case we obtain from (1) 

T = 2~l*eo exp (jo)t), ~1" = T G (~) exp (-- ]co~) dT 
8 
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and for the relaxation function (6) 

N 

n*-- )2 

A 
Formulas (10) and (1 1) determine the asymptotic behavior of the functions fi(zi) for fast cox i >> I and slow cox i << 1 

effects, respectively. 

For small 0 the principal terms in the expansion (12) of the function frO) are 

{1--6)  

f ( o ) ~ : ( ~ ) , ~ > l ; f ( e ) ~ r - - g - ) o  ~ , , ~ < i ;  

I f ( O ) ~ - - - - l n O ,  ~--  1. 

Let us consider the behavior of the relaxation functions G(t), (6), and the integral relation (1) for X m << t<< X m + ~, 

i.e., in a certain time interval exceeding the duration of the relaxation processes 1, ..., M and less than for the structures 

M + 1, ..., N. This corresponds to the conception of  the "action pointer" [1 ]. Applying the asymptotic formulas (12) and 

(13) for this case and limiting ourselves to the principal term of the expansion for each relaxation mechanism, we have 

M N N l - - f ; i  h'  

i = 1  i ~ M - c : , [ r  1 i2~:/"[*l 'Bi<I \ CA i /I T - -  t~M-r-1.13i=l G i In-- . ) . i  (14) 

Substituting (14) into (1) yields 

t 

where ~ ( l ) =  i' e (0d t  is the strain, 

! 

T~2~Me(t ) '~ OJ,(t)-+- i' ~M(/-- ' r )  et ~) tiT, (15) 

M 

i=~,I 

5'  

h~ 1 --[3i ,\, 
t 

Gg In - -  

(16) 

(17) 

(18) 

In asymptotic formulas of  the majority of  kernels of the integral equation (1) proposed by different researchers (see 

[ 1 ]), the principal (first) term of  the expansion as t ~ 0 is identical to the power-law: 

G(O ~ I/tV (19) 

In our case the first terms of the function '~M(t) (see (18)) take account of the presence of many relaxation mechanisms. 

Each component in the first term of  (18) here has the same type of  singularity as (d9). The second term in (18) takes into 

account the logarithmic singularity that appears for multiplet splitting with ~i = 1. Each slow relaxation mechanism i = 

M + 1 . . . .  , N for the time interval t << XM§ 1 is characterized by some value of  ~i" Processes with ~i > 1 hence fall into 

the sum for GM (17), with ~i ~< 1 in the sum for ~M(t) (18), where the mechanisms with ~i < 1 ar~ in the first component, 

and with ~i = 1 in the second. The fast relaxation mechanisms, i = 1 . . . .  ,M, yield a contribution to the viscosity VM (16). 

The analysis performed shows that the types of  singularity in the relaxation function (3) with discrete relaxation 
time spectrum agree completely with the types of singularities of  the integral kernels used in the mechanics of viscoelastic 
materials, Koltunov, Rabotnov, Rzhanitsyn, Slonimskii, etc. [ 1 ], that were introduced purely phenomenologically. 
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THEORY OF THERMAL WAVES 

V. A. Bubnov UDC 532.24.02 

An analogy between thermal and electromagnetic waves is established. The conditions under which thermal 
oscillations can give rise to acoustical oscillations are derived. The coefficients of thermal conductivity in 
liquid helium are calculated as a function of the temperature below the lambda point. 

1. Analogy between Thermal and Electromagnetic Waves. We shall examine the first two Maxwell equations in the 
case that electric and magnetic conduction currents are absent: 

0D 0B 
rot H -- , rot E . . . .  . 

Ot Ot 

Let the physical properties of the medium be determined by the following equations: 

D : e o E + P ,  B:~oHq-M.  

Substituting these equations into system (1), we rewrite the latter as follows: 

0E aP OH OM 
r o t H = e 0 - ~ - + - ~ ,  r o t E : - - ~ 0  0 ~  Ot 

(1) 

(2) 

In these equations, the second terms on the right determine the electric and magnetic displacement current densities 
which arise as a result of polarization and magnetization, respectively. 

In the stationary case, the system of equations (2) goes over into the following: 

r o t H = 0 ,  r o t E = 0 ,  (3) 

which for a two conductor line has a solution of the form [ 1 ]: 

H=Ho=Ho(x)  k, E=Eo=Eo(x)  j, Ho--Eo. (4) 
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